PicoBello Workshops

Aus AKIS
Zur Navigation springen Zur Suche springen

PicoBello-Konzept

Dies ist ein Wiki für Interessierte und PicoBello-Workshop-Teilnehmende.

Programmier-Projekte in Theorie und Praxis mit dem Raspberry Pi Pico für Einsteiger ohne Programmierkenntnisse

Die Workshops erfolgen als Jitsi-Webmeeting, also online von PC zu PC.

Ziel der Workshops

  • Ziel ist, dass Teilnehmende eigene Projekte mit dem Pico selbst planen und umsetzen können.
  • Die Workshops PicoBello-01 und -02 sind Voraussetzungen für die weiteren PicoBello-Workshops.

Teilnahmevoraussetzungen für PicoBello-01

  • Teilnehmende: Lesen und Schreiben können und INTERESSE haben.
  • Technik:
    • Windows- oder Apple-PC (für den Programmier-Editor) mit
    • Internetanschluss (für die Teilnahme am Jitsi-Meeting).

Workshop-Termine

Aktuelle PicoBello-Termine, siehe:
https://www.elektronik-kompendium.de/service/events/


-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Material-Set Pico

  • 1 Raspberry Pi Pico, RP2040 Mikrocontroller mit angelöteten Stiftleisten auf Steckbrett mit 830 Kontakten
  • 1 Steckbrett mit 400 Kontakten
  • 1 USB-Kabel 1,5 m mit Micro USB Stecker
  • 40 Verbindungskabel 10 cm
  • 5 Taster
  • 10 Widerstände 470 Ohm
  • 5 Widerstände 10 kOhm
  • 15 LEDs (5 rote, 5 gelbe und 5 grüne)
  • 1 aktiver Summer



-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Prinzipieller Ablauf: Pico-Vorbereitung, -Programmierung und -Betrieb

Pico-Vorbereitung.png

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Pico-Programmierung.png

  • Das Thonny-Fenster ist in der Basis-Version zweigeteilt: in der oberen Hälfte (3) wird das aktuell bearbeitete Programm angezeigt; Programme können aufgerufen, bearbeitet, abgespeichert, gestartet oder gestoppt/beendet werden.
  • In der unteren Hälfte (4), welche mit "Kommandozeile" (oder "Shell") überschrieben ist, können Direkt-Befehle an den Pico gegeben, Programm-Eingaben abgefragt und Programm-Ausgaben angezeigt werden.
  • Auf dem Pico-Steckbrett (5) werden die im Programm angesprochenen Ein- und Ausgabegeräte sowie Anzeigen mit Verbindungskabeln verbunden.

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Pico-Betrieb.png

  • Nach der Programm-Fertigstellung kann der Pico vom PC getrennt werden, um selbständig zu "laufen". Vorher muss das beabsichtigte Programm unter "main.py" auf dem Pico gespeichert werden, denn bei Anschluss einer externen Stromversorgung (6) per Batterien oder USB-Netzteil (oder Onboard-Netzteil) startet der Pico automatisch das Programm "main.py".
  • Das Programm "main.py" läuft dann (7) selbständig mit allen programmierten Ein- und Ausgaben, sowie Anzeigen.

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Workshop PicoBello-01

Projekte / Programme

Im Folgenden sind die in PicoBello-01 besprochenen Programme aufgeführt.

Folgende zwei Varianten beschreiben, wie die hier vorgestellten Programme in den eigenen Thonny-Editor gelangen können:

  • Durch einen Klick mit der linken Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein Browser-Fenster mit den genutzten MicroPython-Programm-Befehlen, die von dort in den Thonny-Editor kopiert werden können ...

oder ...

  • Durch einen Klick mit der rechten Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein anderes Browser-Fenster, über welches über „Ziel speichern unter …“ die Text-Dateien mit den MicroPython-Programm-Befehlen auf den eigenen PC heruntergeladen werden können. Von dort können die Befehle in den Thonny-Editor kopiert werden.
  1. Was macht das Programm? erklärt, was das jeweilige Programm bewirkt.
  2. Beschreibung der Befehle erläutert kurz benutzte Programm-Befehle .
  3. Was probieren ...? gibt Anregungen zum selber experimentieren .

Mit eckigen Klammern [ ] werden Programm-Befehle beschrieben; "Z4" steht für Zeile 4.

Viel Spaß beim Testen und Ausprobieren ...


0010 HalloWelt.py

0010 HalloWelt.png

Media:0010 HalloWelt.txt

Was macht das Programm?

  • Es testet, ob die Verbindung PC (mit Thonny) zu Pico (MicroPython) funktioniert, und meldet bei Erfolg: erstes Lebenszeichen des Picos.

Beschreibung der Befehle

  • Durch den Befehl [print] zeigt der Pico Informationen in der Kommandozeile des Thonny-Editors an
    • in anschließender Klammer folgt die anzuzeigende Ausgabe-Information:
      • Text in Anführungszeichen wird angezeigt, z.B. print("Hallo Welt") ergibt Hallo Welt in der Kommandozeile.

Was probieren ...?

  • Text in Anführungszeichen ändern,
  • print Befehl mehrfach anwenden.

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0020 Schleife 0-9.py

0020 Schleife 0-9.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

print("Schleife startet!")
for Nummer in range(10):
    print("Schleifen-Nummer", Nummer)
print("Schleife beendet!")

===Ende============ MicroPython Programm-Code für Thommy ============Ende===



Was macht das Programm?

  • Es bildet eine Schleife mit einer Anzahl von Durchläufen.

Beschreibung der Befehle

  • Der Befehl [print] zeigt Informationen im Thonny-Bereich Kommandozeile
    • in anschließender Klammer folgt die anzuzeigende Ausgabe-Information:
      • Text in Anführungszeichen wird angezeigt, z.B. print("Schleife startet!") ergibt Schleife startet! in der Kommandozeile
      • Variable werden mit ihrem Variablen-Namen angegeben, z.B. print(Nummer) ergibt z.B. 3 in der Kommandozeile
      • Anzeige-Informationen werden durch "," getrennt, z.B. print("Schleifen-Nummer ", Nummer) ergibt z.B. Schleifen-Nummer 3 in der Kommandozeile
  • Der Befehl [for Nummer in range(10):] bildet eine bedingte Schleife,
    • was in der Schleife passiert, wird 4 Leerzeichen eingerückt
    • die Variable "Nummer" (Variablen-Name ist frei wählbar) läuft von "0" bis "9" (Achtung: 10 mal, aber nicht bis "10"!)
    • wenn in der range-Klammer nur ein Wert steht, ist dies der "End"-Wert (der nicht erreicht wird) und der Anfangs-Wert ist "0".
    • was nach der Schleife erfolgt, hat die selbe Einrückung wie "for"

Was probieren ...?

  • Den Schleifen-Zähler End-Wert (anfangs "10") verändern.
  • Die Variable "Nummer" umbenennen.
  • Den Mitteilungstext in der print-Klammer verändern.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0030 Schleife 1-10.py

0030 Schleife 1-10.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

print("Schleife startet!")
for Nummer in range(1,11):
    print("Schleifen-Nummer", Nummer)
print("Schleife beendet!")

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es bildet eine Schleife mit einer Anzahl von Durchläufen, wie "0020 Schleife 0-9.py".

Beschreibung der Befehle

  • In der range-Klammer sind (im Gegensatz zu Programm 0020) zwei Werte eingetragen; der erste ist der Start-Wert und der zweite ist der End-Wert.
  • Die Variable "Nummer" (Variablen-Name ist frei wählbar) läuft von "1" bis "11" (Achtung: 10 mal, aber nicht bis "11"!)

Was probieren ...?

  • Start-Wert und End-Wert verändern.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0040 Endlos-Schleife.py

0040 Endlos-Schleife.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import utime
print("Schleife starten!")
while True:
    print("Schleife läuft!")
    utime.sleep(1)
print("Schleife beendet!")

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es bildet eine Endlos-Schleife, d.h. es kommt nicht zu einem Ende, sondern muss abgebrochen, bzw. gestoppt werden.
  • Es schreibt im Sekundentakt und endlos (in die Kommandozeile) "Schleife läuft".

Beschreibung der Befehle

  • Mit [import] werden sogenannte "Bibliotheken" (Programmpakete) eingebunden, durch die der Pico zusätzliche, spezielle Programm-Befehle nutzen kann.
  • Die Bibliothek "utime" bietet zeitbezogene Befehle, wie z.B. Zeitverzögerungen, quasi "Pausen".
  • Der Schleifen-Befehl [while] prüft eine Bedingung auf "Wahrheit", ob ein Zeit- oder Wert-Vergleich zutrifft, also "wahr" ist; solange die Bedingung "wahr", also zutreffend ist, wird die Schleife durchlaufen. Wenn nicht (mehr) "wahr", wird der Folge-Befehl mit [while]-Einrückung - also [print] in Z6 - ausgeführt.
  • "True" hinter [while] bedeutet quasi automatische und andauernde Bedingungs-Erfüllung. Daher wird der Folge-Befehl [print] in Zeile 6 NIE erreicht.
  • Die Schleifen-Befehle [print] und [utime.sleep] in Z4 und Z5 werden durchlaufen und nach Z5 wird "hochgesprungen" zu Z4 und so wird die Schleife endlos durchlaufen.
  • Der [print]-Befehl in Z6 wird nicht erreicht.
  • Das Programm kann nur durch Stoppen beendet werden.
  • [utime.sleep] bedeutet eine Pause in Anzahl Sekunden, deren Wert in der Folge-Klammer steht; Dezimal-Angaben werden mit "." angegeben, also z.B. [utime.sleep(0.8)] bedeutet eine Pause von 0,8 Sekunden.

Was probieren ...?

  • Den Pausenwert (Klammerwert hinter [utime.sleep]) variieren.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0050 Eingabe Supermann.py

0050 Eingabe Supermann.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

Eingabe_Name = input ("Wie heißt Du? ")
if Eingabe_Name == "Clark Kent":
    print("TOLL, Du bist Supermann!")
else:
    print(Eingabe_Name,"  ??? Du bist nicht Supermann!")
    

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es fragt eine Namens-Eingabe ab und prüft auf Übereinstimmung, also "Gleichheit" mit "Clark Kent".
  • Abhängig von der Eingabe ist man Supermann oder nicht.
  • Das Programm läuft nur ein Mal durch, unabhängig von der Eingabe.

Beschreibung der Befehle

  • Der Befehl [input] bewirkt die Anzeige des Klammertextes in der Kommandozeile, und ordnet die Eingabe der frei wählbaren Variablen "Eingabe_Name" zu.
  • Das Zeichen "=" ordnet Werte zu, wie in Z1.
  • Das Zeichen "==" wird in der Abfrage, ob 2 Werte identisch sind, benutzt, wie in Z2.
  • [if ...:][else:] ist ein Abfrage-Befehl, der aufgrund des Abfrageergebnisses verzweigt, und den einen oder den anderen "Ast" durchläuft.
  • Wenn die Abfrage in Z2 stimmt, wird Z3 durchlaufen ... und dann Z6 ... und Ende.
  • Wenn die Abfrage in Z2 NICHT stimmt, wird Z5 (und NICHT Z3) durchlaufen ... und dann Z6 ... und Ende.

Was probieren ...?

  • Den Abfrage-Text verändern.
  • Weitere Zeilen nach Z3 oder Z5 einfügen.
  • Die Variable "Eingabe_Name" verändern.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0060 bedingte Schleife.py

0060 bedingte Schleife.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

Name = input("Wie heißt Du? ")
while Name != "Clark Kent":
    print("Du bist nicht Supermann  -  Versuchs nochmal!")
    Name = input("Wie heißt Du? ")
print("Du bist Supermann!")

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es prüft, wie 0050, ob die Eingabe mit "Clark Kent" übereinstimmt.
  • Es loopt (= wiederholt die Schleife; von engl. loop = Schleife, Kreis, Kreislauf) und läuft so lange mit Abfragen, bis die "richtige" Eingabe erfolgt.

Beschreibung der Befehle

  • Der Vergleichs-Operator "!=" bedeutet "ist NICHT identisch".
  • Also bedeutet Z2: Solange die Variable "Name" ungleich "Clark Kent" ist, ist die [while]-Bedingung erfüllt, die Schleife Z3+Z4 wird durchlaufen, und Z3 fortwährend abgefragt.
  • Wenn die Variable "Name" GLEICH "Clark Kent" ist, die [while]-Bedingung also NICHT erfüllt ist, wird die Schleife Z3+Z4 NICHT MEHR durchlaufen, Z5 angesprungen ... und danach das Programm beendet.

Was probieren ...?

  • Eingabe-Variable "Name" umbenennen.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0070 Zufallszahl.py

0070 Zufallszahl.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import utime
import random

while True:
    Zufallszahl = random.randint(0,10)
    print(Zufallszahl)
    utime.sleep(1)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es listet Zufallszahlen im Sekundentakt auf.

Beschreibung der Befehle

  • Die Bibliothek [random] bietet Funktionen zur Erzeugung von Zufallszahlen.
  • [while true:] erzeugt, da mit "True" automatisch erfüllt, eine Endlos-Schleife.
  • [random.randint] bietet eine Integer-Zahl (also Ganzzahl) zwischen und einschließlich des Anfangs-Werts (im Beispiel: 0) und des End-Werts (im Beispiel: 10).
  • Durch [print] in Z6 wird die Zufallszahl in der Kommandozeile angezeigt.
  • [utime.sleep(1)] verursacht eine 1-Sekunden-Pause bevor das Programm wieder zu Z5 springt um die nächste Zufallszahl zu erzeugen.

Was probieren ...?

  • Die Anfangs- und End-Werte des Zufallszahlen-Bereichs in Z5 verändern.
  • Die Pausenzeit in Z7 variieren.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0080 Was tun Generator.py

0080 Was tun Generator.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import random

import utime

wort1 = ["Ich gehe", "Wir gehen", "Oma geht", "Unsere Familie geht", "Papa geht"]
wort2 = ["heute", "morgen", "nächste Woche", "an Weihnachten", "an meinem Geburtstag", "übermorgen"]
wort3 = ["ins Schwimmbad.", "ins Kino.", "Pizza essen.", "in Urlaub.", "Ski fahren.", "in die Kirche."]

while True:
    zufall1 = random.randint(0,len(wort1)-1)
    zufall2 = random.randint(0,len(wort2)-1)
    zufall3 = random.randint(0,len(wort3)-1)

    print()
#    print(zufall1,zufall2,zufall3)
    print(wort1[zufall1],wort2[zufall2],wort3[zufall3])
    
    utime.sleep(2)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es bietet einen "Vorschlags-Generator", welcher Empfehlungen zu Freizeit-Aktivitäten im 2-Sekunden-Rhytmus anzeigt.
  • 3 vorbestimmte Zeichengruppen werden jeweils zufällig ausgesucht und aneinandergereiht.
  • Es ist ein Beispiel für die Anwendung von 3 Zufalls-Generatoren.

Beschreibung der Befehle

  • wort1,2,3 in Z5-Z7 bilden jeweils Zeichen-Gruppen mit verschiedenen Anzahlen von Zeichen in Hochkommas, jeweils getrennt durch Kommas.
  • Im Beispiel besteht "wort1" aus 5 Zeichengruppen und "wort2" und "wort3" aus jeweils 6 Zeichengruppen.
  • [len(wort1)] ermittelt die Anzahl der Zeichengruppen in wort1, also im Beispiel: 5.
  • "zufall1" ist ein Zufallswert zwischen 0 und (5-1=) 4.
  • [wort1["0"]] bietet den ersten Wert und [wort1["4"]] bietet den fünften Wert jeweils aus wort1.
  • [print] in Z16 setzt die drei Zeichen-Gruppen zusammen und zeigt so einen ganzen Satz in der Kommandozeile.

Was probieren ...?

  • Personen & Aktivitäten in wort1, Zeitpunkte in wort2 und Orte in wort3 (jeweils in Anführungszeichen und durch Komma getrennt) ergänzen und/oder rausnehmen.
  • Durch Entfernen/Setzen der Raute in Z15 die Zufalls-Zahlen zeigen/verbergen.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0210 LED_auf_Pico an aus.py

0210 LED auf Pico an aus.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import machine
import utime

LED_auf_Pico = machine.Pin(25, machine.Pin.OUT)

while True:
    LED_auf_Pico.value(1)
    utime.sleep(0.1)
    LED_auf_Pico.value(0)
    utime.sleep(0.7)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es schaltet die sich auf dem Pico befindliche LED ein und aus.

Beschreibung der Befehle

  • Die Bibliothek [machine] bietet die Nutzung von Ein- und Ausgabe-Funktionen auf dem Pico.
  • Die Zuweisung in Z4 [machine.Pin(25, machine.Pin.OUT)] definiert einerseits (OUT) eine Signal-Ausgabe und andererseits das genutzte GPIO-Pin, nämlich 25, welches die interne LED ansteuert.
  • [while true:] erzeugt, da mit "True" automatisch erfüllt, eine Endlos-Schleife, welche die danach eingerückten Befehle nacheinander wiederholend durchläuft.
  • Die in Z4 definierte LED-Funktion kann mittels [.value(1)] eingeschaltet und mittels [.value(0)] ausgeschaltet werden.
  • Die Pause in Z8 nach dem Einschalt-Befehl in Z7 definiert die LED-An-Dauer.
  • Die Pause in Z10 nach dem Ausschalt-Befehl in Z9 definiert die LED-Aus-Dauer.
  • Der Zyklus in der [while True:]-Schleife: einschalten - warten - ausschalten - warten - ... läuft endlos.

Was probieren ...?

  • Beide [utime.sleep]-Werte verändern.
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0211 LED_auf_Pico an aus mit Variablen.py

0211 LED auf Pico an aus mit Variablen.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import machine
import utime

LED_auf_Pico = machine.Pin(25, machine.Pin.OUT)

an=0.1
aus=1

while True:
    LED_auf_Pico.value(1)
    utime.sleep(an)
    LED_auf_Pico.value(0)
    utime.sleep(aus)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

Was macht das Programm?

  • Es macht das selbe wie 0210: die sich auf dem Pico befindliche LED ein- und aus-schalten.

Beschreibung der Befehle

  • Doch mit einem gewissen Unterschied: die Werte von [utime.sleep] in der jeweils folgenden Klammer werden nicht als Zahlenwerte (wie in 0210) eingegeben, sondern als Variable (z.B. "an" und " aus") die zu Beginn des Programms mit Werten belegt werden, und dann von den einzelnen Befehlen genutzt werden können. Dies ist besonders hilfreich, wenn die selben Zeit-Dauern öfters genutzt werden, wie z.B. beim Morse-Projekt.

Was probieren ...?

  • Verändern der Werte, die den Variablen zugeordnet werden (in Z6 und Z7).
  • Ändern der Variablen-Namen "an" und "aus".
  • ...

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0310 LED ext an aus.py

0310 LED ext an aus.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import machine
import utime

externeLED = machine.Pin(15, machine.Pin.OUT)

while True:
    externeLED.value(1)
    utime.sleep(0.9)
    externeLED.value(0)
    utime.sleep(0.1)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

0310 LED ext an aus-SB-Gr.png

0310 LED ext an aus-SB-Fo.jpg


Was macht das Programm?

  • Es macht fast das selbe wie 0210, nämlich eine LED ein- und ausschalten, aber dieses Mal eine externe LED.

Beschreibung der Befehle

  • In Z4 wird nun GP15 adressiert, und zwar durch "Pin.OUT" als Ausgang, an den z.B. eine LED angeschlossen werden kann.
  • Die LED wird dort mit ihrer "Plus-Seite", der "Anode" (das ist der längere Draht) über einen 330 Ohm-Widerstand angeschlossen.
  • Die LED wird mit ihrer "Minus-Seite", der "Kathode" (das ist der kürzere Draht) mit der Minus-Längsleiste des Steckbretts verbunden.

Was probieren ...?

  • GP Pin ändern und entsprechend den Widerstand "umstecken".

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Workshop PicoBello-02

Projekte / Programme

Im Folgenden sind die in PicoBello-02 besprochenen Programme aufgeführt.

Folgende zwei Varianten beschreiben, wie die hier vorgestellten Programme in den eigenen Thonny-Editor gelangen können:

  • Durch einen Klick mit der linken Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein Browser-Fenster mit den genutzten MicroPython-Programm-Befehlen, die von dort in den Thonny-Editor kopiert werden können ...

oder ...

  • Durch einen Klick mit der rechten Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein anderes Browser-Fenster, über welches über „Ziel speichern unter …“ die Text-Dateien mit den MicroPython-Programm-Befehlen auf den eigenen PC heruntergeladen werden können. Von dort können die Befehle in den Thonny-Editor kopiert werden.
  1. Was macht das Programm? erklärt, was das jeweilige Programm bewirkt.
  2. Beschreibung der Befehle erläutert kurz benutzte Programm-Befehle .
  3. Was probieren ...? gibt Anregungen zum selber experimentieren .

Mit eckigen Klammern [ ] werden Programm-Befehle beschrieben; "Z4" steht für Zeile 4.

Viel Spaß beim Testen und Ausprobieren ...


0311 LED ext und Summer an aus.py

0311 LED ext und Summer an aus.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

#Dieses Programm schaltet im Wechsel eine LED und einen Summer ein und aus.

#Laden der Bibliothek "machine" zur Nutzung der GPIO-Pins 14 und 15
import machine
#Laden der Bibliothek "utime" zur Nutzung von Pausen-Funktionen
import utime

#Definition der Variablen "externeLED" zur Vorbereitung einer Ausgabe auf GPIO-15
externeLED = machine.Pin(15, machine.Pin.OUT)
#Definition der Variablen "Piepsi" zur Vorbereitung einer Ausgabe auf GPIO-14
Piepsi = machine.Pin(14, machine.Pin.OUT)

#Start Endlos-Schleife
while True:
    #Ein-Schalten der LED auf GPIO-15
    externeLED.value(1)
    #Pause von ... Sekunden, also LED so lange an
    utime.sleep(0.9)
    #Aus-Schalten der LED auf GPIO-15
    externeLED.value(0)
    #Ein-Schalten des Summers auf GPIO-14
    Piepsi.value(1)
    #Pause von ... Sekunden, also piepst so lange
    utime.sleep(0.1)
    #Aus-Schalten des Summers auf GPIO-14
    Piepsi.value(0)
    #Weiter mit Zeile 15
    

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

0311 LED ext und Summer an aus-SB-Gr.png

0311 LED ext und Summer an aus-SB-Fo.jpg


Was macht das Programm?

  • Wie in 0210 wird eine externe LED ein- und ausgeschaltet und zusätzlich ein aktiver Summer.

Was machen die Befehle?

  • Z4...

Was auf dem Steckbrett beachten?

  • Widerstand: sollte größer 300 Ohm sein.
  • LED: auf Polung achten: kurzes Bein an "-" und langes Bein an "+"; nur mit Vorwiderstsnd betreiben.
  • Summer: auf Polung achten: äußere Anschlüsse sind mit "-" und "+" gekennzeichnet; mittlerer Anschluss bleibt frei.

Was probieren ...?

  • GP Pin.




-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0351 Morsen Worte mit Summer.py

800px-International Morse Code.svg.png

0351 Morsen Worte mit Summer.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import machine
import utime

externeLED = machine.Pin(15, machine.Pin.OUT)
Piepsi = machine.Pin(14, machine.Pin.OUT)

# https://en.wikipedia.org/wiki/Morse_code
# International Morse code is composed of five elements:
#    short mark, dot or dit: "dit duration" is one time unit long
#    long mark, dash or dah: three time units long
#    inter-element gap between the dits and dahs within a character: one dot duration or one unit long
#    short gap (between letters): three time units long
#    medium gap (between words): seven time units long

#    A 	.-
#    B 	-...
#    C 	-.-.
#    D 	-..
#    E 	.
#    F 	..-.
#    G 	--.
#    H 	....
#    I 	..
#    J 	.---
#    K 	-.-
#    L 	.-..
#    M 	--
#    N 	-.
#    O 	---
#    P 	.--.
#    Q 	--.-
#    R 	.-.
#    S 	...
#    T 	-
#    U 	..-
#    V 	...-
#    W 	.--
#    X 	-..-
#    Y 	-.--
#    Z 	--..
#    0 	-----
#    1 	.----
#    2 	..---
#    3 	...--
#    4 	....-
#    5 	.....
#    6 	-....
#    7 	--...
#    8 	---..
#    9 	----.

Faktor = 0.1
dit = 1 * Faktor
dah = 3 * Faktor
PauzwiZei = 1 * Faktor # Theorie: 1
PauzwiBu = 5 * Faktor  # Theorie: 3
PauzwiWo = 9 * Faktor  # Theorie: 7

Wort = input("Bitte Wort eingeben: ")

Länge = len(Wort)
print("Wortlänge: ",Länge)
Zähler = 0

while Zähler < Länge:
    print(Wort[Zähler])
    if (Wort[Zähler]) == "a":   #.-
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "b":   #-...
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "c":   #-.-.
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
          #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz 
    elif (Wort[Zähler]) == "d":   #-..
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "e":   #.
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "f":   #..-.
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "g":   #--.
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "h":   #....
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "i":   #..
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "j":   #.---
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
    elif (Wort[Zähler]) == "k":   #-.-
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "l":   #.-..
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "m":   #--
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "n":   #-.
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "o":   #---
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "p":   #.--.
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "q":   #--.-
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "r":   #.-.
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "s":   #...
         #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
         #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    elif (Wort[Zähler]) == "t":   #-
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "u":   #..-
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "v":   #...-
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "w":   #.--
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "x":   #-..-
         #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "y":   #-.--
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
    elif (Wort[Zähler]) == "z":   #z: --..
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #lang
        Piepsi.value(1)
        utime.sleep(dah)
        Piepsi.value(0)
        #ende lang
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
        utime.sleep(PauzwiZei)
        #kurz
        Piepsi.value(1)
        utime.sleep(dit)
        Piepsi.value(0)
        #ende kurz
    else:
        utime.sleep(PauzwiWo)
    utime.sleep(PauzwiBu)
    Zähler = Zähler + 1
    

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

0311 LED ext und Summer an aus-SB-Gr.png

0311 LED ext und Summer an aus-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0421 Adventskalender 1-24 auto.py

0421 Adventskalender 1-24 auto.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import utime
import machine

LED1_1 = machine.Pin(16, machine.Pin.OUT)
LED2_2 = machine.Pin(17, machine.Pin.OUT)
LED3_4 = machine.Pin(18, machine.Pin.OUT)
LED4_8 = machine.Pin(19, machine.Pin.OUT)
LED5_16 = machine.Pin(20, machine.Pin.OUT)

LED1_1.value(0)
LED2_2.value(0)
LED3_4.value(0)
LED4_8.value(0)
LED5_16.value(0)


while True:
    dez=1
    while dez<25:
        print("dez-Wert in Zeile 18 :",dez)
#        dez_str=input("der wievielte Dezember ist heute? ")
#        dez = int(dez_str)
        LED1_1.value(0)
        LED2_2.value(0)
        LED3_4.value(0)
        LED4_8.value(0)
        LED5_16.value(0)
        if dez==1:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(0)
            LED3_4.value(0)
            LED4_8.value(0)
            LED5_16.value(0)
        elif dez==2:
            print(dez,". Dezember")
            LED2_2.value(1)
        elif dez==3:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
        elif dez==4:
            print(dez,". Dezember")
            LED3_4.value(1)
        elif dez==5:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED3_4.value(1)
        elif dez==6:
            print(dez,". Dezember")
            LED2_2.value(1)
            LED3_4.value(1)
        elif dez==7:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
            LED3_4.value(1)
        elif dez==8:
            print(dez,". Dezember")
            LED4_8.value(1)
        elif dez==9:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED4_8.value(1)
        elif dez==10:
            print(dez,". Dezember")
            LED2_2.value(1)
            LED4_8.value(1)
        elif dez==11:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
            LED4_8.value(1)
        elif dez==12:
            print(dez,". Dezember")
            LED3_4.value(1)
            LED4_8.value(1)
        elif dez==13:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED3_4.value(1)
            LED4_8.value(1)
        elif dez==14:
            print(dez,". Dezember")
            LED2_2.value(1)
            LED3_4.value(1)
            LED4_8.value(1)
        elif dez==15:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
            LED3_4.value(1)
            LED4_8.value(1)
        elif dez==16:
            print(dez,". Dezember")
            LED5_16.value(1)
        elif dez==17:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED5_16.value(1)
        elif dez==18:
            print(dez,". Dezember")
            LED2_2.value(1)
            LED5_16.value(1)
        elif dez==19:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
            LED5_16.value(1)
        elif dez==20:
            print(dez,". Dezember")
            LED3_4.value(1)
            LED5_16.value(1)
        elif dez==21:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED3_4.value(1)
            LED5_16.value(1)
        elif dez==22:
            print(dez,". Dezember")
            LED2_2.value(1)
            LED3_4.value(1)
            LED5_16.value(1)
        elif dez==23:
            print(dez,". Dezember")
            LED1_1.value(1)
            LED2_2.value(1)
            LED3_4.value(1)
            LED5_16.value(1)
        else:
            print(dez,". Dezember")
            LED1_1.value(0)
            LED2_2.value(0)
            LED3_4.value(0)
            LED4_8.value(1)
            LED5_16.value(1)
        print("nach if Schleife")
        utime.sleep(1)
        dez=dez+1


===Ende============ MicroPython Programm-Code für Thommy ============Ende===

0421 Adventskalender 1-24 auto-SB-Gr.png

0421 Adventskalender 1-24 auto-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0401 Würfel linear.py

0401 Würfel linear.png

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import utime
import machine
import random

LED1_1 = machine.Pin(16, machine.Pin.OUT)
LED2_2 = machine.Pin(17, machine.Pin.OUT)
LED3_4 = machine.Pin(18, machine.Pin.OUT)
LED4_8 = machine.Pin(19, machine.Pin.OUT)
LED5_16 = machine.Pin(20, machine.Pin.OUT)

LED1_1.value(0)
LED2_2.value(0)
LED3_4.value(0)
LED4_8.value(0)
LED5_16.value(0)


Start = 1
Ende = 6

while True:
    Augen = random.randint(Start,Ende)
    
    print("gewürfelt: ",Augen)

    LED1_1.value(0)
    LED2_2.value(0)
    LED3_4.value(0)

    if Augen==1:
        LED1_1.value(1)
    elif Augen==2:
        LED2_2.value(1)
    elif Augen==3:
        LED1_1.value(1)
        LED2_2.value(1)
    elif Augen==4:
        LED3_4.value(1)
    elif Augen==5:
        LED1_1.value(1)
        LED3_4.value(1)
    elif Augen==6:
        LED2_2.value(1)
        LED3_4.value(1)

    utime.sleep(1)
)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

0421 Adventskalender 1-24 auto-SB-Gr.png

0421 Adventskalender 1-24 auto-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0430 Temperaturmessung onboard.py

  • Analog-Digital-Converter (ADC)

Tabelle 1 zeigt die Auflösungsmöglichkeiten der 4 im Pico eingebauten 16-Bit AD-WAndler:
0430 Tab 1 2 hoch.jpg


  • Temperaturberechnung (Temperatursensor mit negativem Temperaturkoeffizienten)

Tabelle 2 erklärt die Formel zur Temperaturberechnung:
0430 Tab 2 Temperatur.jpg


0430 Temperaturmessung onboard.png

0421 Adventskalender 1-24 auto-SB-Gr.png

0421 Adventskalender 1-24 auto-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0510 2 LEDs mit 2 Taster-Interrupts ein-aus.py

0510 2 LEDs mit 2 Taster-Interrupts ein-aus.png

Media:0510 2 LEDs mit 2 Taster-Interrupts ein-aus.txt

Media:0511 2 LEDs mit 2 Taster-Interrupts ein-aus +Kom+Anz.txt

0510 2 LEDs mit 2 Taster-Interrupts ein-aus-SB-Gr.png

0510 2 LEDs mit 2 Taster-Interrupts ein-aus-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


0520 Ampel mit Anforderung.py

0520 Ampel mit Anforderung.png

Media:0520 Ampel mit Anforderung.txt

0520 Ampel mit Anforderung-SB-Gr.png

0520 Ampel mit Anforderung-SB-Fo.jpg

Was macht das Programm?

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Workshop PicoBello-03

Projekte / Programme

Im Folgenden sind die in PicoBello-03 besprochenen Programme aufgeführt.

Folgende zwei Varianten beschreiben, wie die hier vorgestellten Programme in den eigenen Thonny-Editor gelangen können:

  • Durch einen Klick mit der linken Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein Browser-Fenster mit den genutzten MicroPython-Programm-Befehlen, die von dort in den Thonny-Editor kopiert werden können ...

oder ...

  • Durch einen Klick mit der rechten Maus-Taste auf den Media: xyz .txt –Link öffnet sich ein anderes Browser-Fenster, über welches über „Ziel speichern unter …“ die Text-Dateien mit den MicroPython-Programm-Befehlen auf den eigenen PC heruntergeladen werden können. Von dort können die Befehle in den Thonny-Editor kopiert werden.
  1. Was macht das Programm? erklärt, was das jeweilige Programm bewirkt.
  2. Beschreibung der Befehle erläutert kurz benutzte Programm-Befehle .
  3. Was probieren ...? gibt Anregungen zum selber experimentieren .

Mit eckigen Klammern [ ] werden Programm-Befehle beschrieben; "Z4" steht für Zeile 4.

Viel Spaß beim Testen und Ausprobieren ...


GS_102 Fading LED with PWM.py

GS 102 Fading LED with PWM.png

Media:GS 102 Fading LED with PWM.txt

GS 102+103 Fading LED with PWM-SB-Gr.png

GS 102+103 Fading LED with PWM-SB-Fo.jpg

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


GS_103 Fading LED with PWM auto.py

GS 103 Fading LED with PWM auto.png

Media:GS 103 Fading LED with PWM auto.txt

GS 102+103 Fading LED with PWM-SB-Gr.png

GS 102+103 Fading LED with PWM-SB-Fo.jpg

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


GS_085 HC-SR501 PIR-Alarm LED.py

GS 085 HC-SR501 PIR-Alarm LED-SB-Gr.png

GS 085 HC-SR501 PIR-Alarm LED-SB-Fo.jpg

==Anfang=========== MicroPython Programm-Code für Thommy ===========Anfang==

import machine
import utime

k=0

sensor_pir = machine.Pin(28, machine.Pin.IN, machine.Pin.PULL_DOWN)
led = machine.Pin(15, machine.Pin.OUT)

def pir_handler(pin):
    global k
    utime.sleep_ms(100)
    if pin.value():
        print("ALARM! Motion detected!")
        for i in range(20):
            led.toggle()
            utime.sleep_ms(100)
        k=0
        
sensor_pir.irq(trigger=machine.Pin.IRQ_RISING, handler=pir_handler)

while True:
    print(k,"kein Interrupt")
    k=k+1
    utime.sleep(.2)

===Ende============ MicroPython Programm-Code für Thommy ============Ende===

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)


Ressourcen

Pin Belegung am Pico

20220122 PicoBello Pico Pin Belegung.jpg


-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

MicroPython auf Pico und Thonny auf PC installieren

MicroPython auf Pico installieren 1) USB-Kabel zuerst an Pico einstecken (Achtung: breite Stecker-Seite nach oben).
01 Micro USB-Stecker vor Pico 1000.jpg
-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

02 Micro USB-Stecker an Pico 1000.jpg
-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

2) „BOOTSEL“-Taster auf Pico drücken und gedrückt halten, und während gedrückt: USB-Kabel an PC einstecken … und bis 3 zählen.
03 BOOTSEL an Pico drücken 1000.jpg
-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

3) „BOOTSEL“-Taster auf Pico loslassen.
4) Neues USB-Laufwerk erscheint mit Dateien:
INDEX.HTM und INFO_UF2.TXT
04 RPI-RP2 Verzeichnis erscheint auf PC.jpg
-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

  1. Doppel-Klick (mit linker Maustaste) auf Symbol über Name „INDEX.HTM“.
  2. Die Seite „Welcome to your Raspberry Pi Pico“ öffnet sich.
  3. Klicken (wenn nicht vermerkt, immer mit linker Maustaste) auf „Getting started with MicroPython“.
  4. Nach unten scrollen, bis grüner Button mit weißer Schrift „Download UF2 file“ erscheint.
    (Die Datei-Endung "UF2" steht für "USB Flashing Format", einem von Microsoft entwickelten Datei-Format, um Microcontroller-Bertriebssysteme über USB-Speicher zu "flashen" (= in den Speicher des Microcontrollers zu laden).
  5. Klick auf diesen Button.
  6. Die UF2-Datei wird in den Download-Ordner heruntergeladen.
  7. Download-Ordner öffnen und Download-Fenster neben (automatisch geöffnetem) USB-Laufwerk-Fenster anordnen.
  8. Datei mit „.UF2“ Endung vom Download-Fenster in das USB-Laufwerk-Fenster „ziehen“ (= kopieren).
  9. Kurz darauf verschwindet das USB-Laufwerk-Fenster … und somit wurde MicroPython auf den Pico geladen.

Entwicklungsumgebung "Thonny" auf PC herunterladen und installieren

  1. Von thonny.org die für das Betriebssystem passende Thonny-Programmier-Umgebung herunterladen.
  2. Das heruntergeladene Thonny (durch Doppel-Klick auf die Datei) installieren.
  3. Thonny starten.
  4. Sicherstellen, dass das USB-Kabel Pico mit PC (noch) verbindet.
  5. Im Thonny-Fenster unten rechts auswählen:
    “MicroPython (Raspberry Pi Pico)“
  6. Klick auf grünen Plus-Button („New“) startet neues, leeres Thonny-Programmier-Fenster.
  7. Über „Load“ und „Save“ können (auch eigene) Programme geladen, bzw. gespeichert werden … sowohl auf dem PC, wie auch auf dem Pico.



-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Pico Internet-Ressourcen

Nr Titel Quelle Bemerkung
1 Erste Schritte mit dem Raspberry Pi Pico (D) https://www.blog.berrybase.de/blog/2021/02/08/erste-schritte-mit-dem-raspberry-pi-pico/
2 Raspberry Pi Pico (E) https://how2electronics.com/micropython-projects/raspberry-pi-pico-projects/ The section covers Raspberry Pi Pico Based Projects and tutorials/guide.
3 Raspberry Pi Pico Getting Started Tutorial with MicroPython (E) https://how2electronics.com/raspberry-pi-pico-getting-started-tutorial-with-micropython/
4 Schlauer Zwerg: Maschinelles Lernen mit dem Raspberry Pi Pico, Teil 1 (D) https://www.heise.de/hintergrund/Schlauer-Zwerg-Maschinelles-Lernen-mit-dem-Raspberry-Pi-Pico-Teil-1-6143330.html?seite=all Mit TinyML lässt sich der Raspi Pico ohne Internetanbindung für Machine-Learning-Anwendungen nutzen.
5 Grove Shield for Pi Pico V1.0 - Seeed Wiki (E) https://wiki.seeedstudio.com/Grove_Shield_for_Pi_Pico_V1.0/#specification
6 eBay (D) https://www.ebay.de/itm/284314540163
7 Raspberry Pi Pico Essentials + GRATIS Raspberry Pi Pico (frei Haus) - Elektor (D) https://www.elektor.de/raspberry-pi-pico-essentials
8 Erste Schritte mit dem Raspberry Pi Pico - BerryBase Blog (D) https://www.blog.berrybase.de/blog/2021/02/08/erste-schritte-mit-dem-raspberry-pi-pico/
9 zisternen-fuellstand-mit-ultraschall-raspberry-messen-teil-1 (D) https://www.dax.la/wordpress/2018/07/13/zisternen-fuellstand-mit-ultraschall-raspberry-messen-teil-1/
10 Getting started with Raspberry Pi Pico - Meet Raspberry Pi Pico, Raspberry Pi Projects (E) https://projects.raspberrypi.org/en/projects/getting-started-with-the-pico/1
11 raspberrypi.de/forum piezo-summer-an-gpio-problem (D) https://forum-raspberrypi.de/forum/thread/7220-piezo-summer-an-gpio-problem/
12 burster.de miniatur-zug-und-druckkraftsensoren (D) https://www.burster.de/de/sensoren/kraftsensoren/miniatur-zug-und-druckkraftsensoren/p/detail/8417
13 exp-tech.de/sensoren/druck (D) https://www.exp-tech.de/sensoren/druck/
14 seeedstudio raspberry-pi-pico-projects (E) https://www.seeedstudio.com/blog/2021/03/26/10-raspberry-pi-pico-projects/
15 Getting Started with RP2040 – Raspberry Pi (E) https://www.raspberrypi.org/documentation/rp2040/getting-started/
16 Pi Pico Soil Moisture Indicator (E) https://andywarburton.co.uk/raspberry-pi-pico-soil-moisture-sensor/
17 Hier kann "Get Started with MicroPython on Raspberry Pi Pico" und die Fehlerkorrektur zum Buch heruntergeladen werden. https://hackspace.raspberrypi.org/books/micropython-pico
18 Quick MicroPython reference for the RP2 https://docs.micropython.org/en/latest/rp2/quickref.html
19
20


-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Equipment Anbieter


-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Pico Video-Links

Nr Titel Quelle Bemerkung
1 Raspberry Pi Pico Complete Guide, Pinout+Features+ADC+I2C+OLED+Internal Temperature Sensor+DHT11 - YouTube https://www.youtube.com/watch?v=oaM80GyVIwA&t=844s
2 Raspberry Pi PICO, Starting With MicroPython + Examples; I2C OLED, ADC, PWM - YouTube https://www.youtube.com/watch?v=zlKJ5hvfs6s
3 Raspberry Pi Pico - YouTube https://www.youtube.com/watch?v=peLH-HNza44 LED Lauflicht
4 Raspberry Pi Pico: Inputs & Servo Control - YouTube https://www.youtube.com/watch?v=TDj2kcSA-68
5 Raspberry Pi Pico - Control the (I/O) World - YouTube https://www.youtube.com/watch?v=Zy64kZEM_bg
6 Raspberry Pi Pico der interne Temperatursensor - YouTube https://www.youtube.com/watch?v=J8AuGEGgqYM
7 Raspberry Pi Pico Einführung mit dem LCD 1602 (16x2) + HD44780 I2C Adapter in Thonny MicroPython - YouTube https://www.youtube.com/watch?v=IkDhN8EbOUs
8 Raspberry Pi Pico (RP2040) SPI Example with MicroPython and C/C++, Digi-Key Electronics - YouTube https://www.youtube.com/watch?v=jdCnqiov6es
9 How to Use WS2812B RGB LEDs with Raspberry Pi Pico (using MicroPython) - YouTube https://www.youtube.com/watch?v=PCHahR7jBbQ
10 Talk to Your Pico Over Serial, Raspberry Pi Pico UART Tutorial - YouTube https://www.youtube.com/watch?v=pbWhoJdYA1s
11 How to set up a wake word on the Raspberry Pi Pico - Easy as AI - YouTube https://www.youtube.com/watch?v=V0KXZGhHUQY
12 Raspberry Pi Pico Interrupt Problems - YouTube https://www.youtube.com/watch?v=-8sWuLtXS08
13 USB Serial Input on the Raspberry Pi Pico - YouTube https://www.youtube.com/watch?v=NHwMJZwRo7k
14 Beginners Guide to SPI on the Raspberry Pi Pico (BMP280 Example) - YouTube https://www.youtube.com/watch?v=s7Lud1Gqrqw
15 using Interrupts on the raspberry Pi pico, Micropython, simple Demo and code - YouTube https://www.youtube.com/watch?v=Qw2xr5a2rSA
16 Raspberry Pi Pico UART setup, Send data to PC with UART, Real time data plotting, Matplotlib - YouTube https://www.youtube.com/watch?v=PFdJvAbHB5c
17 How to read the temperature sensor on the Raspberry Pi Pico - YouTube https://www.youtube.com/watch?v=PYOaO1yW0rY
18 Using I2C between Raspberry Pi computer, a Pico microcontroller and an Arduino - YouTube https://www.youtube.com/watch?v=Wh-SjhngILU
19 raspberry pi pico, raspberry pi pico ultrasonic sensor, raspberry pi pico micropython - YouTube https://www.youtube.com/watch?v=Uti3s0XGsEY
20 Raspberry Pi Pico #1 - Der leichte Einstieg! https://www.youtube.com/watch?v=HigJJ5HhaAA
21 Raspberry Pi Pico Servo Motors via PWM https://www.youtube.com/watch?v=NqchLYWHCzA
22 LED anschließen und Vorwiderstand berechnen https://www.youtube.com/watch?v=DBQBNj3xJR8
23 Alles über Widerstände und wie man die Farbringe liest. https://www.youtube.com/watch?v=C-Ywtr2ftxA
24
25
26
27
28


-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Fotos



20210804 Pico pur mit USB-Kabel.jpg

  • Pico „pur“ mit USB-Kabel zum PC


-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

20210804 Pico pur mit Stiftleiste und USB-Kabel.jpg

  • Pico mit anzulötenden Stiftleisten


-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

20210804 Pico pur mit USB-Kabel Detail.jpg

  • Pico mit angelöteten Stiftleisten


-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

20210804 Pico auf Breadboard mit Ampel und USB-Kabel.jpg

  • Pico auf Breadboard mit Ampel und USB-Kabel


-> Inhaltsverzeichnis (dieses Ressourcen-Wikis)

Pico Projekt-Ideen

Nr Idee Initiator Status Weiter-Verfolgung
1 Temperatur-Messung "am" Pico
2 Überwachungs-Thermometer für Innenräume,

für Gefrier- und Kühlschrank (mit Schwelle und Alarm)

3 Analyse von Holzkäfer-Geräuschen z.B. im Dachstuhl
4 Garagentor-Status abfragen z.B. für Garage
5 Briefkasten (Posteingang)
6 Füllstandsmesser z.B. für Brunnen
7 Abstandsmesser z.B. Corona
8 Feuchtigkeits-Monitoring Pflanzenerde
9 Wasserwerfer z.B. "für" Katze
10 Lauflichtsteuerung
11 Nametag (feststehend; mit Durchlauf)
12 Rhytmus-Schalter (z.B. mit Klatsch- oder Taster-Erkennung)
13 Druckmessung z.B. Nordic-Walking-Stöcke
14 logische Schaltungen, Gatter
15 Messung Sonnenscheinausbeute (Stärke, Dauer, Zeiten, usw.)
16 Messung Wasserparameter z.B. für einen Teich (Temperatur, Sauerstoffgehalt, Wasserdichte, usw.)
17 Dämmerungsschalter (z.B. Beleuchtung ermöglichen)
18 Zahlenschloss mit Zahlenfeld (z.B. für Türöffner)
19 Morse-Dekodierer (z.B. per Taster oder Mikrofon)
20 GPS-Logger (z.B. für Alibi: wo war ich wann?)
21 Diebstahl-/Bewegungs-Warner (z.B. am Gepäckstück)
22 Annäherungsschalter (z.B. Wasserhahn schalten)
23 Bewegungsmelder (z.B. Raumlicht oder Alarm schalten)
24 Detektion und Aufnahme von Tier (und Mensch) im Garten
25 Integration mit bestehender Haus-Automation
26 Töne erzeugen "Klavier"?
27 Zimmer-Ampel mit Anforderung
28 Entscheidungshilfe (mit Zufallszahlengenerator)
29 Weihnachts-LED-Bäumchen
30 Eier-Uhr
31 Springbrunnen-Steuerung
32 Zeit- und annäherungs-gesteuerter Adventskranz
33 Eisenbahn-Anwendungen
34
35
36
37
38
39


-> Inhaltsverzeichnis (dieses PicoBello-Wikis)

Pico Offene Fragen

Nr Frage Vermutung Antwort Quelle Referenzen
1
2
3
4
5
6
7
8
9

-> Inhaltsverzeichnis (dieses PicoBello-Wikis)